Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.349
Filtrar
1.
PLoS One ; 19(4): e0300544, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656972

RESUMO

Obesity is a major global health epidemic that has adverse effects on both the people affected as well as the cost to society. Several anti-obesity drugs that target GLP-1 receptors have recently come to the market. Here, we describe the effects of tesofensine, a novel anti-obesity drug that acts as a triple monoamine neurotransmitter reuptake inhibitor. Using various techniques, we investigated its effects on weight loss and underlying neuronal mechanisms in mice and rats. These include behavioral tasks, DeepLabCut videotaped analysis, electrophysiological ensemble recordings, optogenetic activation, and chemogenetic silencing of GABAergic neurons in the Lateral Hypothalamus (LH). We found that tesofensine induces a greater weight loss in obese rats than lean rats, while differentially modulating the neuronal ensembles and population activity in LH. In Vgat-ChR2 and Vgat-IRES-cre transgenic mice, we found for the first time that tesofensine inhibited a subset of LH GABAergic neurons, reducing their ability to promote feeding behavior, and chemogenetically silencing them enhanced tesofensine's food-suppressing effects. Unlike phentermine, a dopaminergic appetite suppressant, tesofensine causes few, if any, head-weaving stereotypy at therapeutic doses. Most importantly, we found that tesofensine prolonged the weight loss induced by 5-HTP, a serotonin precursor, and blocked the body weight rebound that often occurs after weight loss. Behavioral studies on rats with the tastant sucrose indicated that tesofensine's appetite suppressant effects are independent of taste aversion and do not directly affect the perception of sweetness or palatability of sucrose. In summary, our data provide new insights into the effects of tesofensine on weight loss and the underlying neuronal mechanisms, suggesting that tesofensine may be an effective treatment for obesity and that it may be a valuable adjunct to other appetite suppressants to prevent body weight rebound.


Assuntos
Fármacos Antiobesidade , Compostos Bicíclicos Heterocíclicos com Pontes , Neurônios GABAérgicos , Obesidade , Animais , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Ratos , Camundongos , Fármacos Antiobesidade/farmacologia , Masculino , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Região Hipotalâmica Lateral/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Camundongos Transgênicos , Redução de Peso/efeitos dos fármacos , Ratos Sprague-Dawley
2.
J Chem Ecol ; 50(3-4): 143-151, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366062

RESUMO

Chemical repellents play a crucial role in personal protection, serving as essential elements in reducing the transmission of vector-borne diseases. A biorational perspective that extends beyond the olfactory system as the classical target may be a promising direction to move. The taste system provides reliable information regarding food quality, helping animals to discriminate between nutritious and potentially harmful food sources, often associated with a bitter taste. Understanding how bitter compounds affect feeding in blood-sucking insects could unveil novel molecules with the potential to reduce biting and feeding. Here, we investigated the impact of two naturally occurring bitter compounds, caffeine and quinine, on the feeding decisions in female Aedes aegypti mosquitoes at two distinctive phases: (1) when the mosquito explores the biting substrate using external taste sensors and (2) when the mosquito takes a sip of food and tastes it using internal taste receptors. We assessed the aversiveness of bitter compounds through both an artificial feeding condition (artificial feeder test) and a real host (arm-in-cage test). Our findings revealed different sensitivities in the external and internal sensory pathways responsible for detecting bitter taste in Ae. aegypti. Internal detectors exhibited responsiveness to lower doses compared to the external sensors. Quinine exerted a more pronounced negative impact on biting and feeding activity than caffeine. The implications of our findings are discussed in the context of mosquito food recognition and the potential practical implications for personal protection.


Assuntos
Aedes , Cafeína , Comportamento Alimentar , Quinina , Paladar , Animais , Feminino , Cafeína/farmacologia , Aedes/fisiologia , Comportamento Alimentar/efeitos dos fármacos
3.
Endocrinology ; 165(5)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38368624

RESUMO

Glucoprivic feeding is one of several counterregulatory responses (CRRs) that facilitates restoration of euglycemia following acute glucose deficit (glucoprivation). Our previous work established that glucoprivic feeding requires ventrolateral medullary (VLM) catecholamine (CA) neurons that coexpress neuropeptide Y (NPY). However, the connections by which VLM CA/NPY neurons trigger increased feeding are uncertain. We have previously shown that glucoprivation, induced by an anti-glycolygic agent 2-deoxy-D-glucose (2DG), activates perifornical lateral hypothalamus (PeFLH) neurons and that expression of NPY in the VLM CA/NPY neurons is required for glucoprivic feeding. We therefore hypothesized that glucoprivic feeding and possibly other CRRs require NPY-sensitive PeFLH neurons. To test this, we used the ribosomal toxin conjugate NPY-saporin (NPY-SAP) to selectively lesion NPY receptor-expressing neurons in the PeFLH of male rats. We found that NPY-SAP destroyed a significant number of PeFLH neurons, including those expressing orexin, but not those expressing melanin-concentrating hormone. The PeFLH NPY-SAP lesions attenuated 2DG-induced feeding but did not affect 2DG-induced increase in locomotor activity, sympathoadrenal hyperglycemia, or corticosterone release. The 2DG-induced feeding response was also significantly attenuated in NPY-SAP-treated female rats. Interestingly, PeFLH NPY-SAP lesioned male rats had reduced body weights and decreased dark cycle feeding, but this effect was not seen in female rats. We conclude that a NPY projection to the PeFLH is necessary for glucoprivic feeding, but not locomotor activity, hyperglycemia, or corticosterone release, in both male and female rats.


Assuntos
Neurônios , Neuropeptídeo Y , Ratos Sprague-Dawley , Animais , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Feminino , Ratos , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/genética , Saporinas/farmacologia , Neuropeptídeos/metabolismo , Desoxiglucose/farmacologia , Melaninas/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Região Hipotalâmica Lateral/metabolismo , Região Hipotalâmica Lateral/efeitos dos fármacos , Hormônios Hipotalâmicos/metabolismo , Orexinas/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Hormônios Hipofisários/metabolismo , Glucose/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos
5.
Eur J Nucl Med Mol Imaging ; 50(6): 1597-1606, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764966

RESUMO

PURPOSE: Secretin activates brown adipose tissue (BAT) and induces satiation in both mice and humans. However, the exact brain mechanism of this satiety inducing, secretin-mediated gut-BAT-brain axis is largely unknown. METHODS AND RESULTS: In this placebo-controlled, single-blinded neuroimaging study, firstly using [18F]-fluorodeoxyglucose (FDG) PET measures (n = 15), we established that secretin modulated brain glucose consumption through the BAT-brain axis. Predominantly, we found that BAT and caudate glucose uptake levels were negatively correlated (r = -0.54, p = 0.037) during secretin but not placebo condition. Then, using functional magnetic resonance imaging (fMRI; n = 14), we found that secretin improved inhibitory control and downregulated the brain response to appetizing food images. Finally, in a PET-fMRI fusion analysis (n = 10), we disclosed the patterned correspondence between caudate glucose uptake and neuroactivity to reward and inhibition, showing that the secretin-induced neurometabolic coupling patterns promoted satiation. CONCLUSION: These findings suggest that secretin may modulate the BAT-brain metabolic crosstalk and subsequently the neurometabolic coupling to induce satiation. The study advances our understanding of the secretin signaling in motivated eating behavior and highlights the potential role of secretin in treating eating disorders and obesity. TRIAL REGISTRATION: EudraCT no. 2016-002373-35, registered 2 June 2016; Clinical Trials no. NCT03290846, registered 25 September 2017.


Assuntos
Tecido Adiposo Marrom , Apetite , Eixo Encéfalo-Intestino , Encéfalo , Comportamento Alimentar , Neuroimagem Funcional , Resposta de Saciedade , Secretina , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Apetite/efeitos dos fármacos , Apetite/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiologia , Secretina/metabolismo , Secretina/farmacologia , Resposta de Saciedade/efeitos dos fármacos , Resposta de Saciedade/fisiologia , Eixo Encéfalo-Intestino/efeitos dos fármacos , Eixo Encéfalo-Intestino/fisiologia , Método Simples-Cego , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Glucose/metabolismo , Recompensa , Transdução de Sinais/efeitos dos fármacos , Humanos , Comportamento Alimentar/efeitos dos fármacos , Alimentos
6.
Nat Commun ; 13(1): 578, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102146

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is an important health concern worldwide and progresses into nonalcoholic steatohepatitis (NASH). Although prevalence and severity of NAFLD/NASH are higher in men than premenopausal women, it remains unclear how sex affects NAFLD/NASH pathophysiology. Formyl peptide receptor 2 (FPR2) modulates inflammatory responses in several organs; however, its role in the liver is unknown. Here we show that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH. NASH-like liver injury was induced in both sexes during choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) feeding, but compared with females, male mice had more severe hepatic damage. Fpr2 was more highly expressed in hepatocytes and healthy livers from females than males, and FPR2 deletion exacerbated liver damage in CDAHFD-fed female mice. Estradiol induced Fpr2 expression, which protected hepatocytes and the liver from damage. In conclusion, our results demonstrate that FPR2 mediates sex-specific responses to diet-induced NAFLD/NASH, suggesting a novel therapeutic target for NAFLD/NASH.


Assuntos
Progressão da Doença , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores de Formil Peptídeo/metabolismo , Caracteres Sexuais , Animais , Biomarcadores/metabolismo , Células Cultivadas , Deficiência de Colina/complicações , Citoproteção/efeitos dos fármacos , Dieta Hiperlipídica , Estradiol/sangue , Estradiol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Deleção de Genes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Inflamação/patologia , Lipídeos/toxicidade , Lipoproteínas VLDL/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Formil Peptídeo/deficiência , Regulação para Cima/efeitos dos fármacos
7.
Pharmacol Biochem Behav ; 213: 173339, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35077729

RESUMO

Cannabinoid use has increased among aging individuals. However, little information on age-related differences in the behavioral effects of these agents is available. To explore potential differences in the behavioral effects of cannabinoids, we determined effects of Δ9-tetrahydrocannabinol (THC, 1-10 mg/kg) or rimonabant (0.3-3.2 mg/kg) on operant fixed-ratio responding (FR10) for food in young adult (6 months) and aged (29 months) rats. THC dose-dependently decreased responding for food. Rimonabant alone had little or no effect on responding up to 1.0 mg/kg, but disrupted responding following a 3.2 mg/kg dose. Rimonabant (1.0 mg/kg) partially antagonized response disruption by THC. These effects were similar in young adult and aged rats. However, aging has been reported to change the neurobiology of cannabinoid CB1 receptors. To confirm our rats exhibited such differences, we assessed CB1 receptor binding sites and function in six subcortical (caudate, nucleus accumbens CA1, and CA2/CA3), and three cortical regions (medial prefrontal, temporal, entorhinal) in young adult (6 months) or aged (26 months) male Lewis rats using quantitative autoradiography. CB1 receptor binding sites were reduced in cortical, but not subcortical brain regions of aged rats. CB1 receptor function, at the level of receptor-G protein interaction, was not different in any region studied. Results indicate that down-regulation of CB1 receptor binding sites observed in cortical regions of aged rats was not accompanied by a commensurate decrease in CB1 receptor-stimulated [35S]GTPγS binding, suggesting a compensatory increase in receptor function in cortical areas. Together, our results provide additional evidence of age-related changes in central CB1 receptor populations. However, the functional compensation for decreased CB1 receptor binding may mitigate changes in behavioral effects of cannabinoids. With the rising use of cannabinoid-based therapeutics among aging populations, further evaluation of age-related changes in the cannabinoid system and the impact of these changes on effects of this class of drugs is warranted.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dronabinol/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Fatores Etários , Animais , Autorradiografia/métodos , Encéfalo/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Canabinoides/farmacologia , Condicionamento Operante/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Ligantes , Masculino , Ratos , Ratos Endogâmicos Lew , Receptores de Canabinoides/metabolismo , Rimonabanto/farmacologia
8.
Dev Cell ; 57(3): 361-372.e5, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35045336

RESUMO

The symbiotic relationship between commensal microbes and host animals predicts unidentified beneficial impacts of individual bacterial metabolites on animal physiology. Peptidoglycan fragments (muropeptides) from the bacterial cell wall are known for their roles in pathogenicity and for inducing host immune responses. However, the potential beneficial usage of muropeptides from commensal bacteria by the host needs exploration. We identified a striking role for muropeptides in supporting mitochondrial homeostasis, development, and behaviors in Caenorhabditis elegans. We determined that the beneficial molecules are disaccharide muropeptides containing a short AA chain, and they enter intestinal-cell mitochondria to repress oxidative stress. Further analyses indicate that muropeptides execute this role by binding to and promoting the activity of ATP synthase. Therefore, given the exceptional structural conservation of ATP synthase, the role of muropeptides as a rare agonist of the ATP synthase presents a major conceptual modification regarding the impact of bacterial cell metabolites on animal physiology.


Assuntos
Complexos de ATP Sintetase/metabolismo , Caenorhabditis elegans/fisiologia , Homeostase , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Peptidoglicano/metabolismo , Animais , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Células HEK293 , Humanos , Intestinos/metabolismo , Metaboloma/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
9.
Pol J Vet Sci ; 25(4): 535-546, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36649097

RESUMO

The aim of this study was to investigate the impact of feed supplements with alfa-amylase and beta-glucanase (Optipartum C+ 200) on ingestive-related behaviour biomarkers registered with real-time sensors: rumination behaviours and reticulorumen parameters (pH and temperature). Cows (n=20) in the treatment group (TG) were fed with Optipartum C+ 200 (Enzymes feed supplement: Alfa-Amylase 57 Units; Beta-Glucanase 107 Units) from 21 days before calving until 30 days after calving with a feeding rate of 200 g/cow/day. Cows (n=22) in the control group (CG) were fed a feed ration without feed supplement. Measurements started from 6 days before calving and continued until 21 days after calving. The following indicators were registered: with the RumiWatch System: Rumination time; Eating time; Drinking time; Rumination chews; Eating chews; Drinking gulps; Bolus; Chews per minute; Chews per bolus. With the SmaXtec system: the temperature, pH of the contents of the cows' reticulorumens, and cows' walking activity. According to our results, feed supplementation with alfa-amylase and beta-glucanase (Optipartum C+ 200) in the TG group resulted in increases in the following parameters: 9% rumination time and eating time, 19% drinking time, 11% rumination chews, 16% eating chews, 13% number of boluses per rumination, 5% chews per minute and 16% chews per bolus. The rumination time showed a strong, positive relation with rumination chews and bolus indicators in both groups (TG and CG) (p⟨0.001); while the rumination time in both groups of cows showed an opposite direction and was negatively related to eating time and eating chews (p⟨0.05). We found a 1.28 % lower reticulorumen pH and a 0.64 % lower reticulorumen temperature in cows fed with the supplement compared with cows in the control group. Cows in TG were 8.80% more active than those in the CG group. For improvement of ingestive-related behaviour we suggest adding a feed supplement with alfa-amylase and beta-glucanase (Optipartum C+ 200).


Assuntos
Ração Animal , Celulase , Suplementos Nutricionais , Digestão , alfa-Amilases , Animais , Bovinos , Feminino , alfa-Amilases/farmacologia , Ração Animal/análise , Dieta/veterinária , Comportamento Alimentar/efeitos dos fármacos , Celulase/farmacologia , Digestão/efeitos dos fármacos
10.
Biochem Biophys Res Commun ; 588: 140-146, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34954521

RESUMO

Smoking cessation increases body weight. The underlying mechanisms, however, have not been fully understood. We here report an establishment of a mouse model that exhibits an augmented body weight gain after nicotine withdrawal. High fat diet-fed mice were infused with nicotine for two weeks, and then with vehicle for another two weeks using osmotic minipumps. Body weight increased immediately after nicotine cessation and was significantly higher than that of mice continued on nicotine. Mice switched to vehicle consumed more food than nicotine-continued mice during the first week of cessation, while oxygen consumption was comparable. Elevated expression of orexigenic agouti-related peptide was observed in the hypothalamic appetite center. Pair-feeding experiment revealed that the accelerated weight gain after nicotine withdrawal is explained by enhanced energy intake. As a showcase of an efficacy of pharmacologic intervention, exendin-4 was administered and showed a potent suppression of energy intake and weight gain in mice withdrawn from nicotine. Our current model provides a unique platform for the investigation of the changes of energy regulation after smoking cessation.


Assuntos
Nicotina/efeitos adversos , Síndrome de Abstinência a Substâncias/patologia , Aumento de Peso , Proteína Relacionada com Agouti/metabolismo , Animais , Calorimetria , Respiração Celular/efeitos dos fármacos , Modelos Animais de Doenças , Ingestão de Energia/efeitos dos fármacos , Exenatida/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Síndrome de Abstinência a Substâncias/genética , Aumento de Peso/efeitos dos fármacos , Aumento de Peso/genética
11.
Mech Ageing Dev ; 201: 111597, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34780856

RESUMO

Accumulating evidence suggests that the influence on developmental traits might have long-term effects on aging and health later in life. Metformin is a widely used drug for treating type 2 diabetes and is also used for delaying sexual maturation in girls with precocious puberty. The current report focuses on investigating the effects of metformin on development and metabolic traits. Heterogeneous mice (UM-HET3) were treated with i.p. metformin between the ages of 15 and 56 days. Our results show that body weight and food consumption were increased in both sexes, and sexual maturation was delayed in females. Tail length and circulating insulin-like growth factor 1 (IGF1) levels were significantly increased in both sexes. No significant difference was found in insulin tolerance test, but glucose tolerance was significantly reduced in the males. Circulating adiponectin and insulin levels were altered by metformin treatment in a sex-specific manner. Analysis of quantitative insulin sensitivity check index (QUICKI) suggests that metformin treatment increased insulin sensitivity in female pups, but had opposite effect in male pups. This study revealed that early life metformin treatment alters development and metabolism of mice in both sex-specific and non-specific manners. These effects of metformin may have long-term impacts on aging-related traits.


Assuntos
Envelhecimento , Peso Corporal , Comportamento Alimentar , Crescimento e Desenvolvimento/efeitos dos fármacos , Metabolismo/efeitos dos fármacos , Metformina/farmacologia , Adiponectina/sangue , Fatores Etários , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Animais , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Teste de Tolerância a Glucose , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Resistência à Insulina , Camundongos , Fatores Sexuais
12.
J Ethnopharmacol ; 284: 114761, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34678414

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bark of Ficus benghalensis L. (family: Moraceae), commonly known as Banyan is recorded as Nyagrodha in Ayurvedic Pharmacopeia of India to manage burning sensation, obesity, diabetes, bleeding disorders, thirst, skin diseases, wounds, and dysmenorrhoea. However, the effect of F. benghalensis bark over glycolysis, gluconeogenesis, and appetite regulation in insulin-resistant pathogenesis has not been reported yet. AIM OF THE STUDY: The present study aimed to investigate the effect of hydroalcoholic extract of F. benghalensis bark in gluconeogenesis, glycolysis, and appetite regulation in fructose-induced insulin resistance in experimental rats. MATERIALS AND METHODS: Male Wister rats were supplemented with fructose in drinking water (10% w/v for 42 days and 20% w/v for next 12 days; a total of 54 days); insulin resistance was confirmed via the elevated area under the curve of the glucose during oral glucose tolerance test after 54 days and was subjected with extract treatment for next 30 days. After 30 days of treatment, animals were fasted to perform oral glucose and insulin tolerance test to estimate glucose and insulin levels. The blood sample was collected for biochemical estimation and the liver homogenate was prepared to estimate hepatic enzymes and enzymatic and non-enzymatic anti-oxidant biomarkers followed by histopathological evaluation. Also, glycogen content was quantified in gastrocnemius muscle and liver homogenates. Further, reported bioactives from the F. benghalensis were retrieved from the ChEBI database and docked against hexokinase, phosphofructokinase, glucose-6-phosphatase, lactate dehydrogenase, and fructose-1,6-biphosphatase to identify the probable lead hits against the enzymes involved in gluconeogenesis. RESULTS: Treatment with the F. benghalensis bark extract significantly increased the body weight and food intake and significantly decreased fructose supplemented water intake. Further, treatment with extract significantly increased the exogenous glucose clearance and well responded to the exogenous insulin. Further, extract treatment improved lipid metabolism, ameliorated plasma leptin, and multiple enzymatic and non-enzymatic antioxidant biomarkers. Likewise, it also improved gluconeogenesis mediated pathogenesis of non-alcoholic fatty liver injury. Additionally, molecular docking also identified mucusisoflavone A and B as lead hits in downregulating gluconeogenesis. CONCLUSION: Hydroalcoholic extract of F. benghalensis bark may prevent insulin resistance by downregulating gluconeogenesis and improving the appetite in fructose-induced insulin-resistant rats.


Assuntos
Ficus/química , Frutose/toxicidade , Casca de Planta/química , Extratos Vegetais/uso terapêutico , Animais , Peso Corporal/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Resistência à Insulina , Masculino , Extratos Vegetais/química , Ratos , Ratos Wistar
13.
Regul Toxicol Pharmacol ; 128: 105091, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34863905

RESUMO

The present study aimed to evaluate the subchronic toxicity of feeding with phytase-transgenic maize line 11TPY050 in Sprague-Dawley (SD) rats. Rats (n = 10/sex/group) were fed with 12.5%, 25% or 50% (w/w) transgenic maize diet, 12.5%, 25% or 50% (w/w) non-transgenic isoline OSL940 maize diet, or 50% (w/w) commercially available Zhengdan958 maize diet for 90 days. Daily clinical observations and weekly measurements of body weights and food consumption were conducted. Blood samples were collected on day 46 and day 91 for hematology and clinical chemistry evaluations. At the end of the study, macroscopic and microscopic examinations were performed. No effects on body weight and food consumption were observed. The results of hematology, clinical chemistry, and absolute and relative organ weights in the transgenic maize group were comparable to those in the parental maize group. Several statistical differences were not dose-related and were not considered to be biologically significant. Furthermore, the terminal necropsy and histopathological examination showed no treatment-related changes among the groups. The results from the present 90-day feeding study of phytase-transgenic maize 11TPY050 indicated no unexpected adverse effects in SD rats. The phytase transgenic maize 11TPY050 has substantial equivalence with non-transgenic maize.


Assuntos
6-Fitase/administração & dosagem , Plantas Geneticamente Modificadas/toxicidade , Zea mays/genética , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Comportamento Alimentar/efeitos dos fármacos , Feminino , Testes Hematológicos , Masculino , Tamanho do Órgão/efeitos dos fármacos , Plantas Geneticamente Modificadas/enzimologia , Ratos , Ratos Sprague-Dawley
14.
J Biol Chem ; 298(1): 101466, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34864060

RESUMO

Complex biological functions within organisms are frequently orchestrated by systemic communication between tissues. In the model organism Caenorhabditis elegans, the pharyngeal and body wall neuromuscular junctions are two discrete structures that control feeding and locomotion, respectively. Separate, the well-defined neuromuscular circuits control these distinct tissues. Nonetheless, the emergent behaviors, feeding and locomotion, are coordinated to guarantee the efficiency of food intake. Here, we show that pharmacological hyperactivation of cholinergic transmission at the body wall muscle reduces the rate of pumping behavior. This was evidenced by a systematic screening of the effect of the cholinesterase inhibitor aldicarb on the rate of pharyngeal pumping on food in mutant worms. The screening revealed that the key determinants of the inhibitory effect of aldicarb on pharyngeal pumping are located at the body wall neuromuscular junction. In fact, the selective stimulation of the body wall muscle receptors with the agonist levamisole inhibited pumping in a lev-1-dependent fashion. Interestingly, this response was independent of unc-38, an alpha subunit of the nicotinic receptor classically expressed with lev-1 at the body wall muscle. This implies an uncharacterized lev-1-containing receptor underpins this effect. Overall, our results reveal that body wall cholinergic transmission not only controls locomotion but simultaneously inhibits feeding behavior.


Assuntos
Proteínas de Caenorhabditis elegans , Inibidores da Colinesterase , Comportamento Alimentar , Junção Neuromuscular , Aldicarb/farmacologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Inibidores da Colinesterase/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Levamisol/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/metabolismo , Transdução de Sinais
15.
Artigo em Inglês | MEDLINE | ID: mdl-34534676

RESUMO

Amylin is a 37-amino acid polypeptide that has been found to be involved in feeding regulation in some mammals, birds, and goldfish. We cloned amylin of Siberian sturgeon and detected its distribution pattern in 15 tissues. The expression levels in the periprandial period (pre-and post-feeding), the changes in the food intake, and the expression levels of related appetite factors after the intraperitoneal injection of amylin were detected. The expression of amylin was found to be the highest in the hypothalamus. Compared with 1 h pre-feeding, the expression levels of amylin in the hypothalamus and duodenum were increased significantly 1 h post-feeding. Compared with the control group (saline), intraperitoneal injection of 50 ng/g, 100 ng/g, and 200 ng/g of amylin significantly inhibited food intake at 1 h post injection, but not at 3 h and 6 h. The injection of 50 ng/g, 100 ng/g, and 200 ng/g amylin significantly inhibited the cumulative feed. After 1 h of 50 ng/g amylin injection, the levels of MC4R and somatostatin in the hypothalamus increased significantly, while the levels of amylin and NPY decreased significantly. The levels of CCK in the valvular intestine were increased significantly. Insulin in the duodenum was also increased significantly, but there was no significant change in ghrelin in the duodenum. These results show that amylin inhibits feeding in Siberian sturgeon by down-regulating the appetite-stimulating factor NPY and up-regulating the appetite-suppressing factors somatostatin, MC4R, CCK, and insulin. This study provides a theoretical basis for studying the feeding function and action mechanisms of amylin in Siberian sturgeon.


Assuntos
Proteínas de Peixes/metabolismo , Peixes/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Sequência de Aminoácidos , Animais , Depressores do Apetite/administração & dosagem , Depressores do Apetite/metabolismo , Regulação do Apetite/efeitos dos fármacos , Regulação do Apetite/genética , Regulação do Apetite/fisiologia , Sequência de Bases , Clonagem Molecular , Duodeno/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/fisiologia , Proteínas de Peixes/administração & dosagem , Proteínas de Peixes/genética , Peixes/genética , Peixes/fisiologia , Expressão Gênica/efeitos dos fármacos , Hipotálamo/metabolismo , Injeções Intraperitoneais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/administração & dosagem , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Filogenia , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
16.
Nutrients ; 13(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34959948

RESUMO

BACKGROUND: Cancer and its therapy is commonly associated with a variety of side effects that impact eating behaviors that reduce nutritional intake. This review will outline potential causes of chemotherapy and radiation damage as well as approaches for the amelioration of the side effects of cancer during therapy. METHODS: Information for clinicians, patients, and their caregivers about toxicity mitigation including nausea reduction, damage to epithelial structures such as skin and mucosa, organ toxicity, and education is reviewed. RESULTS: How to anticipate, reduce, and prevent some toxicities encountered during chemotherapy and radiation is detailed with the goal to improve eating behaviors. Strategies for health care professionals, caregivers, and patients to consider include (a) the reduction in nausea and vomiting, (b) decreasing damage to the mucosa, (c) avoiding a catabolic state and muscle wasting (sarcopenia), and (d) developing therapeutic alliances with patients, caregivers, and oncologists. CONCLUSIONS: Although the reduction of side effects involves anticipatory guidance and proactive team effort (e.g., forward observation, electronic interactions, patient reported outcomes), toxicity reduction can be satisfying for not only the patient, but everyone involved in cancer care.


Assuntos
Antineoplásicos/efeitos adversos , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/efeitos da radiação , Comportamento Alimentar/efeitos dos fármacos , Comportamento Alimentar/efeitos da radiação , Náusea/etiologia , Náusea/prevenção & controle , Neoplasias/tratamento farmacológico , Neoplasias/radioterapia , Radioterapia/efeitos adversos , Vômito/etiologia , Vômito/prevenção & controle , Cuidadores , Humanos , Equipe de Assistência ao Paciente , Sarcopenia/etiologia , Sarcopenia/prevenção & controle
17.
Sci Rep ; 11(1): 21653, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741036

RESUMO

Pollinators, particularly wild bees, are suffering declines across the globe, and pesticides are thought to be drivers of these declines. Research into, and regulation of pesticides has focused on the active ingredients, and their impact on bee health. In contrast, the additional components in pesticide formulations have been overlooked as potential threats. By testing an acute oral dose of the fungicide product Amistar, and equivalent doses of each individual co-formulant, we were able to measure the toxicity of the formulation and identify the ingredient responsible. We found that a co-formulant, alcohol ethoxylates, caused a range of damage to bumble bee health. Exposure to alcohol ethoxylates caused 30% mortality and a range of sublethal effects. Alcohol ethoxylates treated bees consumed half as much sucrose as negative control bees over the course of the experiment and lost weight. Alcohol ethoxylates treated bees had significant melanisation of their midguts, evidence of gut damage. We suggest that this gut damage explains the reduction in appetite, weight loss and mortality, with bees dying from energy depletion. Our results demonstrate that sublethal impacts of pesticide formulations need to be considered during regulatory consideration, and that co-formulants can be more toxic than active ingredients.


Assuntos
Abelhas/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Pirimidinas/toxicidade , Estrobilurinas/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Sacarose
18.
Sci Rep ; 11(1): 22852, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819526

RESUMO

Depression and anxiety, two of the most common mental health disorders, share common symptoms and treatments. Most pharmacological agents available to treat these disorders target monoamine systems. Currently, finding the most effective treatment for an individual is a process of trial and error. To better understand how disease etiology may predict treatment response, we studied mice exposed developmentally to the selective serotonin reuptake inhibitor (SSRI) fluoxetine (FLX). These mice show the murine equivalent of anxiety- and depression-like symptoms in adulthood and here we report that these mice are also behaviorally resistant to the antidepressant-like effects of adult SSRI administration. We investigated whether tianeptine (TIA), which exerts its therapeutic effects through agonism of the mu-opioid receptor instead of targeting monoaminergic systems, would be more effective in this model. We found that C57BL/6J pups exposed to FLX from postnatal day 2 to 11 (PNFLX, the mouse equivalent in terms of brain development to the human third trimester) showed increased avoidant behaviors as adults that failed to improve, or were even exacerbated, by chronic SSRI treatment. By contrast, avoidant behaviors in these same mice were drastically improved following chronic treatment with TIA. Overall, this demonstrates that TIA may be a promising alternative treatment for patients that fail to respond to typical antidepressants, especially in patients whose serotonergic system has been altered by in utero exposure to SSRIs.


Assuntos
Antidepressivos de Segunda Geração/toxicidade , Antidepressivos Tricíclicos/farmacologia , Aprendizagem da Esquiva/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Fluoxetina/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade , Tiazepinas/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Comportamento Alimentar/efeitos dos fármacos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Teste de Campo Aberto/efeitos dos fármacos
19.
Nutrients ; 13(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34836194

RESUMO

(1) Background: Prolonged feeding with a high-fat diet (HFD) acts as a stressor by activating the functions of the hypothalamic-pituitary-adrenal gland (HPA) stress axis, accompanied of hypertension by inducing the renin-angiotensin-aldosterone system. Angiotensinases enzymes are regulatory aminopeptidases of angiotensin metabolism, which together with the dipeptidyl peptidase IV (DPP-IV), pyroglutamyl- and tyrosyl-aminopeptidase (pGluAP, TyrAP), participate in cognitive, stress, metabolic and cardiovascular functions. These functions appear to be modulated by the type of fat used in the diet. (2) Methods: To analyze a possible coordinated response of aminopeptidases, their activities were simultaneously determined in the hypothalamus, adenohypophysis and adrenal gland of adult male rats fed diets enriched with monounsaturated (standard diet (S diet) supplemented with 20% virgin olive oil; VOO diet) or saturated fatty acids (diet S supplemented with 20% butter and 0.1% cholesterol; Bch diet). Aminopeptidase activities were measured by fluorimetry using 2-Naphthylamine as substrates. (3) Results: the hypothalamus did not show differences in any of the experimental diets. In the pituitary, the Bch diet stimulated the renin-angiotensin system (RAS) by increasing certain angiotensinase activities (alanyl-, arginyl- and cystinyl-aminopeptidase) with respect to the S and VOO diets. DPP-IV activity was increased with the Bch diet, and TyrAP activity decrease with the VOO diet, having both a crucial role on stress and eating behavior. In the adrenal gland, both HFDs showed an increase in angiotensinase aspartyl-aminopeptidase. The interrelation of angiotensinases activities in the tissues were depending on the type of diet. In addition, correlations were shown between angiotensinases and aminopeptidases that regulate stress and eating behavior. (4) Conclusions: Taken together, these results support that the source of fat in the diet affects several peptidases activities in the HPA axis, which could be related to alterations in RAS, stress and feeding behavior.


Assuntos
Aminopeptidases/efeitos dos fármacos , Gorduras na Dieta/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , Glândulas Suprarrenais/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Endopeptidases/efeitos dos fármacos , Ácidos Graxos/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Azeite de Oliva/farmacologia , Adeno-Hipófise/metabolismo , Ratos , Ratos Wistar , Estresse Fisiológico/efeitos dos fármacos
20.
Life Sci ; 286: 120026, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34627773

RESUMO

AIMS: Glucocorticoids (GC) in excess cause glucose intolerance and dyslipidemia due to their diabetogenic actions. Conceptually, antidiabetic drugs should attenuate these side effects. Thus, we evaluated whether the coadministration of metformin or sitagliptin (or both) with dexamethasone could attenuate GC-induced adverse effects on metabolism. MATERIALS AND METHODS: Adult male rats were treated for 5 consecutive days with dexamethasone (1 mg/kg, body mass (bm), intraperitoneally). Additional groups were coadministered with metformin (300 mg/kg, bm, by oral gavage (og)) or sitagliptin (20 mg/kg, bm, og) or with both compounds in combination. The day after the last treatments, rats were submitted to glucose tolerance tests, pyruvate tolerance test, and euthanized for biometric, biochemical, morphologic, and molecular analyses. KEY FINDINGS: Dexamethasone treatment resulted in reduced body mass and food intake, increased blood glucose and plasma insulin, dyslipidemia, glucose intolerance, pyruvate intolerance, and increased hepatic content of glycogen and fat. Sitagliptin coadministration improved glucose tolerance compared with the control group, an effect paralleled with higher levels of active GLP-1 during an oral GTT. Overall, sitagliptin or metformin coadministration did not prevent any of the dexamethasone-induced metabolic disturbances. SIGNIFICANCE: Coadministration of sitagliptin or metformin result in no major improvement of glucose and lipid metabolism altered by dexamethasone treatment in male adult rats.


Assuntos
Dexametasona/efeitos adversos , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Fosfato de Sitagliptina/administração & dosagem , Animais , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Teste de Tolerância a Glucose , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...